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Abstract.

The feasibility of enhancing neurocontrol robustness, through training of the neurocontroller and state estimator in

the presence of system uncertainties, is investigated on the example of a multivariable aircraft control problem. The

performance and robustness of the newly trained neurocontroHer are compared to those for an existing neurocontrol

design scheme. The newly designed dynamic neurocontroller exhibits s better trade-off between phase and gain

stablllty margins, aad it is tignificantly more rebust to degradations of the plant dynamics.

I. Introduction. Recent advances in the fields of neural networks and control have unveiled the

potential benefits of neurocontrol for complex dynamical systems [1-2]. A particularly important issue in

the applicability of neural networks to serve as controllers for complex aerospace systems is that of devising

neural architectures with good control robustness properties, i.e. able to maintain performance and stability

in the presence of modelling uncertainties or changes in the plant dynamics [3-5]. Towards that goal,

a neurocontroller with an internal structure consisting of a state feedback neuro-regulator coupled to a

state neuro-estimator was trained in the presence of feedbacb-delal/s to achieve the control objectives of a
multivariable aircraft control problem with the nominal plant parameter values [3]. Since the synthesized

neurocontroller exhibited good robustness properties, it was decided to further exploit the potential of such

dynamic architectures to enhance the robustness of flight neurocontrol systems. In this paper, a state

feedback neuro-regulator and a st,,te neuro-estimator are synergistically trained in the presence of feedback-

delays and plant parameter unce_inties to provide independent control of pitch rate and airspeed responses
to pilot command inputs, for the integrated airframe/propulslon model of a modern fighter aircraft described

in Refs.[3-7].

The paper is organised as follows. The vehicle model and the desired closed-loop dynamics are briefly
reviewed in Section II, and are followed in Section III by the training architecture. Nominal performance

and robustness of the synthesized neurocontroller are discussed in Section IV.

II. Vehicle Model. The vehicle model consists of an integrated state-space representation for

a modern fighter aircraft powered by a two-spool turbofan engine and equipped with a two-dimensional

thrust-vectorlng and reversing no_.zle. The linearised dynamics of the vehicle model are of the form [6]

= A_ + s_., _ = c_; (I)

where $ is the 9-component state vector given in Ref.[3]. In Eq.(1), the control input vector is

_a - [WF, 6Tv]T; (2)

where WF is the engine main burner fuel flow rate (lbm/hr), and 5TV is the nozzle thrust vectoring angle

(des). The vehicle outputs to be controlled are

-- iV, Q]T (3)

where V is the aircraft velocity in fl/sec, and Q is the pitch rate in deg/s.

The control design objective is to design a control system that provides decoupled command tracking of
velocity and pitch rate from pilot control inputs with aircraft responses compatible with Level I handling

qualities requirements [8]. In this two control inputs - two control outputs example, the task is that of
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following the trajectories generated from a linear model of the desired vehicle response dynamics to pilot
command inputs [6]:

= (4)

with _SEL = [VszL, QSEL] T, where VsB_ and QsBL are the pilot velocity command and longitudinal stick
deflection respectively; _.c= [_, Qc]r is the ideal response in V (ft/s) and Q (deg/s).

The fuel flow actuator was modelled as a second order function [3], with a maximum fuel flow rate
[WF[,,.a, = 10, O001bm/hr, and a rate limit 114/:F[,,,a, = 20, O00ibm/hr/s. The thrust vectoring actuator

was modelled as a first order function [3] with a maximum thrust vector angle 16TVI,,,az = 10deg, and a

rate limit [6TVI,_a . = 20deg/s. As a result, nonlinearities appear in the control design and evaluation in
the form of actuator position and rate limits.

III. Training Architecture. The neurocontroller and the neuro-estimator of the vehicle state-
vector were simultaneously trained by backpropagation in the closed-loop architecture of Fig.[1]. As in
Refs. [3-5, 7], the two hidden-layer feedforward neurocontroller was trained to minimize an objective function
consisting of a weighted sum of tracking errors, control input commands, and control input rates. During
training, the weights of the objective function were adapted to tune the neurocontroller such that the design
objectives were met. To estimate the vehicle state vector, a single-layer linear feedforward net was trained to

minimize the mean-square error of the vehicle state estimate, f(_-_)2dt, caiculated over entire commanded
trajectories. The pilot commanded trajectories used to train the neurocontroller and the neuro-estimator
consisted of pitch-rate doublets and velocity step functions having the same frequency-content as typical pilot
command inputs. In addition, the system matrices A, B, and C, Eq.(1), were allowed to fluctuate around
their nominal values, and a variable time-delay was introduced in Fig.1 between the actuator outputs and
the vehicle to induce robustness in the neurocontrol design. For simplicity, robustness issues concerning the
uncertainties of the actuator parameters, e.g. rate and position limits, were not addressed in this analysis.
As indicated in Fig.l, the actuator outputs were estimated from the nominal dynamics of the fuel flow rate
and thrust vectoring actuators.

IV. Performance and Robustness. The neurocontroller was tested in the dosed-loop archi-
tecture of Fig.2 on pulse pitch rate input commands, of a different frequency content than the doublets used
in training. The input command chosen to illustrate the neurocontrol performance was defined by the pulse

pitch rate command QsgL(_) = 0.5in for t < 3sec, QsBz,(t) = 0 for _ > 3sec, which was simultaneously
applied with the step velocity command gsEL(t > 0) = 20ft/sec.

Nominal Performance. Closed-loop system simulations indicated that the deviations from the ideal
nominal responses are small for both pitch rate and vdocity commands. The newly trained neurocontroller
exhibits a very satisfactory nominal performance which is comparable to that of the existing neurocontroller
of Ref.[3] trained with nominal plant parameter values in the presence of feedback-delays. As mentioned in
the Introduction, actual vehicle dynamics are expected to differ from the nominal model due to modelling
uncertainties, neglected high order dynamics, and changes in flight conditions. An important criterion in
assessing a practical control design is its ability to maintain performance and stability in the presence of
system uncertainties. A classic specification for robustness, also used in the military specifications for design
of flight control systems [8], is that of stability margin, specifically phase and gain margins [9].

Phase Margin. Towards estimating the phase robustness of the dynamic neurocontroller, an additional
delay _-a was introduced between the actuator outputs and the vehicle (Fig.2) to simulate the effect of the
various time-delays encountered by the signals throughout the closed-loop system. For large values of r_, the
closed-loop system simulations showed a better and smoother tracking for the existing neurocontroller [3]
than for the newly designed neurocontroller. With a 10ms sampling time of the measured vehicle outputs,
the performances of both neurocontrollers were comparable and satisfactory for r_ = 40ms, which is quite
representative of the time-delays to be expected in practlcal implementations of complex flight control
designs.

Gain Margin. To analy,.e the robustness of the neurocontroller to uncertainties of the type that can
be modelled as gain changes at the plant output, closed-loop simulations were run for various sets of the
system matrices, A, B, and C distributed around the nominal values A"°'a_"_'l, B "°'ai"al, and C "°mi"ai. For
high output gains, the tracking performances in pitch rate and velocity responses of both neurocontrollers

are comparable, as iUustrated in the closed-loop responses of Fig.3 for V- and Q-output gains of 2, i.e.
C -- 2C "°'""_l. For low output gains, the newly designed neurocontroller s_abilizes fc_ter than the existing



neurocontroller[3],as illustratedinthe closed-loopresponsesof Fig.4forV- and Q-output gainsof0.55,i.e.

C = 0.55C"°m'"_.

To estimate the robustness of the neurocontrollerto degradations of the plant dynamics, closed-loop

system responses were simulated for 20 random settingsof the Aijs and B_js around theirnominal values

within the margins of r!_nom_-,l S_om_,aq and [ln._.om_,_tz_R.nomi-aq respectively.In each one of these
t 2 "'/.i" ' 2 "*13 J L 2 _w.j Y 2 _£ a

20 randomly generated system degradations,the existingneurocontrollerof Ref.[3]was found to be unsta-

ble. In contrast,the neurocontrollertrainedin the presence of system uncertaintieswithin the synergistic

architectureof Fig.1 was found to be stablein allbut one system degradation (where pitch rate and ve-

locityresponses exhibitedgrowing oscillationsleading to instability).The robustness enhancement of the

newly designed neurocontrollerwith respectto plantparameter uncertaintiesisillustratedinthe closed-loop

responsesof Figs.5& 6.

Error Loop _Failures. In the classicalapproach of flightcontroldesign,an inner loop compensation

(_ _ _) isfirstdesigned to provide stabilityaugmentation, and to place the augmented plant dynamics

within the handling qualitiesspecifications.An outer loop compensation (_ --,9) issubsequentlydesigned

to providedecoupled command trackinginorderto reduce pilotworkload. The inner loop compensation of

thisdynamic neurocontrollerwas evaluatedby consideringfailuresinthe outer compensation loops.Like the

neurocontrollerof Ref.[3],the newly designed neurocontrollertracksvery satisfactorilythe idealpitch-rate

and velocityresponses inthe presence of ev and eQ errorloop failuresrespectively,indicatingthat ituses

pitch rateand velocitymeasurements in a manner consistentwith the classicalidea of providinginner loop

plant augmentation.

V. Conclusion. A trainingscheme has been proposed to enhance the robustnessofneurocontrollers

consistingof a state-feedbackneuro-regulatoroperating in conjunction with a state neuro-estimator. A

neurocontrollerwith such an internalstructurehas been synthesizedforan aircraftcontroldesignexample by

simultaneously trainingthe neuro-regulatorand stateestimator inclosed-loop,in the presence of feedback-

delays and plant parameter uncertainties.This neurocontrol design technique was found to enhance the

trade-offbetween phase and gain stabilitymargins, and in particularthe robustness of the neurocontroller

with respectto degradations of the plant dynamics.

As noted inRef.[10],the fastprocessingresultingfrom the massive parallelismofneuralnetworks,wether

analog or digital,islikelyto reduce the time-delaysthat are typicallyencountered in conventionalcontrol

implementations. Requiringsmallerphase stabilitymargins would furtherenhance the robustnessofpractical

implementations by allowing neurocontroldesignsleading to largergain stabilitymargins. This potential

benefitof neuralcomputation to robust controldesign warrants additionalanalysisand simulations.
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